46 research outputs found

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years 4 and 5

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in 2013 December. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects that were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object (NEO) and Main Belt asteroid (MBA) populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original Wide-field Infrared Survey Explorer survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years 4 and 5

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in 2013 December. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects that were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object (NEO) and Main Belt asteroid (MBA) populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original Wide-field Infrared Survey Explorer survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years Four and Five

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in Dec 2013. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects which were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object and Main Belt asteroid populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original WISE survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years Four and Five

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in Dec 2013. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects which were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object and Main Belt asteroid populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original WISE survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present.Comment: Accepted for publication in the AAS Planetary Science Journa

    Size and Albedo Constraints for (152830) Dinkinesh Using WISE Data

    Full text link
    Probing small main-belt asteroids provides insight into their formation and evolution through multiple dynamical and collisional processes. These asteroids also overlap in size with the potentially hazardous near-earth object population and supply the majority of these objects. The Lucy mission will provide an opportunity for study of a small main-belt asteroid, (152830) Dinkinesh. The spacecraft will perform a flyby of this object on November 1, 2023, in preparation for its mission to the Jupiter Trojan asteroids. We employed aperture photometry on stacked frames of Dinkinesh obtained by the Wide-field-Infrared Survey Explorer and performed thermal modeling on a detection at 12 μ\mum to compute diameter and albedo values. Through this method, we determined Dinkinesh has an effective spherical diameter of 0.760.21+0.110.76^{+0.11}_{-0.21} km and a visual geometric albedo of 0.270.06+0.250.27^{+0.25}_{-0.06} at the 16th and 84th percentiles. This albedo is consistent with typical stony (S-type) asteroids.Comment: Submitted to Astrophysical Journal Letter

    WISE/NEOWISE Preliminary Analysis and Highlights of the 67P/Churyumov-Gerasimenko Near Nucleus Environs

    Get PDF
    On January 18-19 and June 28-29 of 2010, the Wide-field Infrared Survey Explorer (WISE) spacecraft imaged the Rosetta mission target, comet 67P/Churyumov-Gerasimenko. We present a preliminary analysis of the images, which provide a characterization of the dust environment at heliocentric distances similar to those planned for the initial spacecraft encounter, but on the outbound leg of its orbit rather than the inbound. Broad-band photometry yields low levels of CO2 production at a comet heliocentric distance of 3.32 AU and no detectable production at 4.18 AU. We find that at these heliocentric distances, large dust grains with mean grain diameters on the order of a millimeter or greater dominate the coma and evolve to populate the tail. This is further supported by broad-band photometry centered on the nucleus, which yield an estimated differential dust particle size distribution with a power law relation that is considerably shallower than average. We set a 3-sigma upper limit constraint on the albedo of the large-grain dust at <= 0.12. Our best estimate of the nucleus radius (1.82 +/- 0.20 km) and albedo (0.04 +/- 0.01) are in agreement with measurements previously reported in the literature

    Thermal evolution and activity of Comet 9P/Tempel 1 and simulation of a deep impact

    Full text link
    We use a quasi 3-D thermal evolution model for a spherical comet nucleus, which takes into account the diurnal and latitudinal variation of the solar flux, but neglects lateral heat conduction. We model the thermal evolution and activity of Comet 9P/Tempel 1, in anticipation of the Deep Impact mission encounter with the comet. We also investigate the possible outcome of a projectile impact, assuming that all the energy is absorbed as thermal energy. An interesting result of this investigation, is that the estimated amount of dust ejected due to the impact is equivalent to 2--2.6 days of activity, during "quiet" conditions, at perihelion. We show that production rates of volatiles that are released in the interior of the nucleus depend strongly on the porous structure, in particular on the surface to volume ratio of the pores. We develop a more accurate model for calculating this parameter, based on a distribution of pore sizes, rather than a single, average pore size.Comment: 25 pages, 8 figures, accepted for publication in PASP (in press). For fig.xx (composite image, sec.4) and a better resolution of fig.6 see, http://geophysics.tau.ac.il/personal/gal%5Fsarid

    P/2010A2 LINEAR - I: An impact in the Asteroid Main Belt

    Full text link
    Comet P/2010A2 LINEAR is a good candidate for membership with the Main Belt Comet family. It was observed with several telescopes (ESO NTT, La Silla; Gemini North, Mauna Kea; UH 2.2m, Mauna Kea) from 14 Jan. until 19 Feb. 2010 in order to characterize and monitor it and its very unusual dust tail, which appears almost fully detached from the nucleus; the head of the tail includes two narrow arcs forming a cross. The immediate surroundings of the nucleus were found dust-free, which allowed an estimate of the nucleus radius of 80-90m. A model of the thermal evolution indicates that such a small nucleus could not maintain any ice content for more than a few million years on its current orbit, ruling out ice sublimation dust ejection mechanism. Rotational spin-up and electrostatic dust levitations were also rejected, leaving an impact with a smaller body as the favoured hypothesis, and ruling out the cometary nature of the object. The impact is further supported by the analysis of the tail structure. Finston-Probstein dynamical dust modelling indicates the tail was produced by a single burst of dust emission. More advanced models, independently indicate that this burst populated a hollow cone with a half-opening angle alpha~40degr and with an ejection velocity v_max ~ 0.2m/s, where the small dust grains fill the observed tail, while the arcs are foreshortened sections of the burst cone. The dust grains in the tail are measured to have radii between a=1-20mm, with a differential size distribution proportional to a^(-3.44 +/- 0.08). The dust contained in the tail is estimated to at least 8x10^8kg, which would form a sphere of 40m radius. Analysing these results in the framework of crater physics, we conclude that a gravity-controlled crater would have grown up to ~100m radius, i.e. comparable to the size of the body. The non-disruption of the body suggest this was an oblique impact.Comment: 15 pages, 11 figures, in pres
    corecore